Nonlinear Image Interpolation using Manifold Learning

نویسندگان

  • Christoph Bregler
  • Stephen M. Omohundro
چکیده

The problem of interpolating between specified images in an image sequence is a simple, but important task in model-based vision. We describe an approach based on the abstract task of "manifold learning" and present results on both synthetic and real image se­ quences. This problem arose in the development of a combined lip-reading and speech recognition system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manifold Traversal Using Density Ridges

In this work we present two examples of how a manifold learning model can represent the complexity of shape variation in images. Manifold learning techniques for image manifolds can be used to model data in sparse manifold regions. Additionally, they can be used as generative models as they can often better represent or learn structure in the data. We propose a method of estimating the underlyi...

متن کامل

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

Karcher means for shape and image denoising

In the context on shape and image modeling by manifold learning, we focus on the problem of denoising. A set of shapes or images being known through given samples, we capture its structure thanks to the diffusion maps method. Denoising a new element classically boils down to the key-problem of pre-image determination, i.e. recovering a point, given its embedding. We propose to model the underly...

متن کامل

Constrained manifold learning for the characterization of pathological deviations from normality

This paper describes a technique to (1) learn the representation of a pathological motion pattern from a given population, and (2) compare individuals to this population. Our hypothesis is that this pattern can be modeled as a deviation from normal motion by means of non-linear embedding techniques. Each subject is represented by a 2D map of local motion abnormalities, obtained from a statistic...

متن کامل

Pre-image as Karcher Mean Using Diffusion Maps: Application to Shape and Image Denoising

In the context on shape and image modeling by manifold learning, we focus on the problem of denoising. A set of shapes or images being known through given samples, we capture its structure thanks to the diffusion maps method. Denoising a new element classically boils down to the key-problem of pre-image determination, i.e. recovering a point, given its embedding. We propose to model the underly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994